Гипотеза — это… определение, понятие, виды и суть гипотезы

Принципы

В разработке новых математических гипотез основную роль играет интуиция исследователя, при этом отмечается ряд общих принципов, согласно которым в теоретической физике разрабатываются математические гипотезы.

Согласно принципу соответствия, из математической гипотезы в частном или предельном её случае должна выводиться уже известная закономерность. Принцип инвариантности накладывает требование общности, неизменности закона по отношению к координатным заменам и геометрическим преобразованиям, принятым в той или иной области в качестве стандартных (например, преобразованиям Лоренца в системах, использующим псевдоевклидовы пространства в качестве модели пространства-времени). Принцип соблюдения некоторой системы законов сохранения накладывает ограничение по сохранению ряда фундаментальных закономерностей. Согласно принципу причинности, явление может зависеть только от явлений, предшествующих ему во времени. Принцип простоты и стройности предписывает предпочитать достаточно простые, лаконичные, логически строгие, симметричные закономерности, не содержащие сложных компонент (таких, как производные больших порядков, высокие степени).

Математическая и естественнонаучная гипотеза

В отличие от естественнонаучной гипотезы, математическая гипотеза может быть логически доказана в некоторой системе аксиом, после чего она становится теоремой, верной при этих ограничениях, «на все времена». Характерным примером является научное наследие Ньютона, заявлявшего, что он «гипотез не измышляет», и стремившегося в физике не выходить за рамки математической модели. Математические теоремы Ньютона, как и древнейшая теорема Пифагора, по сей день остаются в силе, однако его классическая механика и теория тяготения после появления специальной и общей теорий относительности стали опровергнутыми физическими гипотезами. Если разрешимая математическая гипотеза может быть либо доказана, либо опровергнута, то для естественнонаучной гипотезы в силу относительности естественнонаучного знания свойства верифицируемости и фальсифицируемости не исключают друг друга. Механика Ньютона неприменима для скоростей, близких к скорости света, но с очень большой точностью описывает движение большинства тел Солнечной системы. Поэтому в физике обычно говорят не об опровержении гипотез, а об ограничении сферы применимости теории.

Интересные гипотезы и их опровержение

Все всегда начинается с малого. Вся физика была построена на бесчисленных шокирующих гипотезах, которые подтверждались или опровергались благодаря научной практике. Потому стоит упомянуть некоторые интересные идеи.

  1. Некоторые частицы движутся из будущего в прошлое. У физиков есть свой свод правил и запретов, которые принято считать каноном, но вот с появлением тахионов, казалось бы, все нормы пошатнулись. Тахион — это частица, которая может нарушать все принятые законы физики сразу: масса ее мнимая, а двигается она быстрее скорости света. Была выдвинута теория о том, что тахионы могут двигаться обратно во времени. Ввел частицу теоретик Джеральд Фейнберг в 1967 году и объявил, что тахионы – это новый класс частиц. Ученый утверждал, что это фактически обобщение антиматерии. У Фейнберга была масса единомышленников, и идея прижилась на долгое время, впрочем, опровержения все же появились. Тахионы не ушли из физики совсем, но их все же никто не сумел обнаружить ни в космосе, ни в ускорителях. Если бы гипотеза была верной, люди бы могли связываться со своими предками.
  2. Капля водяного полимера может уничтожить океаны. Эта одна из самых шокирующих гипотез говорит о том, что воду можно трансформировать в полимер – это компонент, в котором отдельные молекулы становятся звеньями большой цепи. При этом свойства воды должны меняться. Гипотезу выдвинул химик Николай Федякин после эксперимента с водяным паром. Гипотеза долгое время пугала ученых, ведь предполагалось, что одна капля водного полимера может превратить всю воду планеты в полимер. Впрочем, опровержение самой шокирующей гипотезы не заставило себя ждать. Опыт ученого повторили, подтверждений теории не нашлось.

Подобных самых шокирующих гипотез была масса в свое время, однако многие из них не подтверждались после ряда научных экспериментов, но о них не забывали. Фантазия и научные обоснования – вот два главных компонента для каждого ученого.

Судьба Вселенной

Существует несколько основных сценариев конца Вселенной.

1. Большое сжатие (большой хлопок)

Большинство астрофизиков сходятся во мнении, что Вселенная началась с Большого Взрыва. До этого же она была сосредоточена в сингулярности, точке с бесконечной плотностью.

Сценарий большого сжатия предполагает, что однажды расширение Вселенной заменится на обратный процесс, сжатие. И всё пойдет обратным чередом.

Тем не менее, многие физики не воспринимают эту теорию всерьез, поскольку на данный момент Вселенная расширяется, причём делает это с ускорением. Поэтому догадки о том, когда-нибудь это прекратится, не имеют качественного обоснования.

2. Тепловая смерть

Это абсолютная противоположность большому сжатию. Теория предполагает, что расширение будет продолжаться, и в конечном итоге всё, что останется от Вселенной — это элементарные частицы, беспорядочно летающие по Вселенной. Вселенную в буквальном смысле порвёт на мельчайшие частицы.

Дело в том, что согласно законам термодинамики, энтропия в любой замкнутой системе возрастает, а это означает, что рано или поздно вся материя распределится по Вселенной в качестве элементарных частиц.

Все звёзды погаснут и энергии, чтобы зажечь новые, уже просто не будет.

3. Когда время остановилось

Это не самая популярная теория, но она всё же очень интересна. Задумайтесь, есть ли на свете что-то бесконечное? Наверное, если задать такой вопрос большому количеству людей, то самым популярным вариантом ответа будет время. И действительно, должен ведь один момент отличаться от другого, не может ведь всё застыть в одном моменте — раз и навсегда?

Предположим, что существование Вселенной будет длиться бесконечно долго. В таком случае всё, что может произойти, произойдет. В действительности подобное предположение противоречит многим вычислениям. Поэтому учёные выдвинули теорию, что само время конечно и когда-нибудь оно остановится.

Возможно, однажды мы и сами не почувствуем и не поймём, как начнётся начало нашей «бесконечной» жизни, не имеющей никакого смысла.

Отличие гипотезы от теории

Часто можно встретить ситуации, когда люди случайно, по не знанию или намеренно путаются в терминах «теория» или «гипотеза». Так можно часто услышать фразу: «Это всего лишь теория…», которую относят к таким явлениям как «Глобальное потепление», «Эволюция» и другие. На самом деле существуют довольно точные критерии, которым могут отнести утверждение к одной или другой категории. Так в представленной ниже таблице показано отношение Ньютона к данным терминам:

Определения понятий «теория» и «гипотеза»
Теория Гипотеза
Утверждение тогда и только тогда является теорией, когда оно удовлетворяет всем следующим критериям: Утверждение тогда и только тогда является гипотезой, когда оно удовлетворяет одному или нескольким следующим критериям:
Т1. Это утверждение точно является истиной, ибо оно было достоверно выведено из экспериментов. Х1. Это утверждение в лучшем случае хотя бы высоко вероятно является правдой.
Т2. Это утверждение экспериментально — то есть оно имеет экспериментально тестируемые последствия. X2. Это догадка или предположение — это то, что не основано на экспериментальных свидетельствах.
Т3. Это утверждение относится к измеримым и наблюдаемым свойствам вещи, а не к её «природе». X3. Это утверждение имеет отношение к «природе» вещи, а не к наблюдаемым, измеряемым её свойствам.

Ньютон считал свою «теорию универсальной гравитации» именно теорией, ибо она может быть подтверждена экспериментами. Но с другой стороны, объяснения, причины этого феномена он относил к гипотезам, ибо это уже относилось к объяснению природы явления гравитации, так как возможности для измерения или подтверждения любых утверждений о причинах возникновения гравитации экспериментально в те времена не существовало. Другими словами гипотеза о природе гравитации пытается ответить на вопросы: «Почему гравитация есть?» и «Что является причиной гравитации?», а теория гравитации отвечает на вопросы: «Существует или нет гравитация?», «Насколько сильна гравитация?» «Как измерить гравитацию?».

Примечания

  1. Гипотеза // Толковый словарь живого великорусского языка : в 4 т. / авт.-сост. В. И. Даль. — 2-е изд. — СПб. : Типография М. О. Вольфа, 1880—1882.
  2. Меркулов И. П. // Новая философская энциклопедия / Ин-т философии РАН; Нац. обществ.-науч. фонд; Предс. научно-ред. совета В. С. Стёпин, заместители предс.: А. А. Гусейнов, Г. Ю. Семигин, уч. секр. А. П. Огурцов. — 2-е изд., испр. и допол. — М.: Мысль, 2010. — ISBN 978-5-244-01115-9.
  3. Кириллов В. И., Старченко А. А. Логика: Учебник для юридических вузов. — 5-е, перераб. и доп. — М.: Юристъ, 2002. — 256 с. — ISBN 5-7975-0059-0.
  4. Popper, Karl. Conjectures and refutations : the growth of scientific knowledge (англ.). — London: Routledge, 2004. — ISBN 0-415-28594-1.
  5. Kirsten Walsh. The Idea of Principles in Early Modern Thought: Interdisciplinary Perspectives / Peter R. Anstey. — Routledge, 2017. — 304 с. — ISBN 9781315452678.
  6. Ивлев Ю. В. Логика. — М., Проспект, 2015. — c. 269—270

Гипотеза, диспозиция, санкция

Примеры данных понятий рассматриваются в рамках юридического знания в качестве элементов правовой нормы. Следует также отметить, что сам вопрос структуры норм права в юриспруденции является объектом дискуссии как для отечественной, так и для зарубежной научной мысли.

Гипотеза в юриспруденции представляет собой часть нормы, определяющей условия действия данной нормы, на факты, при которых она начинает функционировать.

Гипотеза в рамках права может выражать такие аспекты, как место / время происшествия определенного события; принадлежность субъекта к определенному государству; сроки вступления правовой нормы в действие; состояние здоровья субъекта, влияющее на возможность реализации того или иного права, и др. Пример гипотезы нормы права: «Ребенок неизвестных родителей, обнаруженный на территории РФ, становится гражданином РФ». Соответственно, указывается место происшествия и принадлежность субъекта конкретному государству. В данном случае имеет место простая гипотеза. В праве примеры подобных гипотез являются достаточно распространенными. Простая гипотеза имеет в своей основе одно обстоятельство (факт), при котором она вступает в действие. Также гипотеза может быть сложной, если речь идет о двух и более обстоятельствах. Кроме того, существует альтернативный вид гипотез, предполагающий действия различного характера, приравненные законодательством друг к другу по тем или иным причинам.

Диспозиция направлена на закрепление прав и обязанностей участников правовых отношений, указание их возможного и должного поведения. Как и гипотеза, диспозиция может иметь простую, сложную либо альтернативную форму. В простой диспозиции речь ведется об одном юридическом последствии; в сложной – о двух и более, наступающих одновременно либо в совокупности; в альтернативной диспозиции – о разных по характеру последствиях («либо-либо»).

Санкция, в свою очередь, является частью нормы, указывающей на принудительные меры для обеспечения прав и обязанностей. Во многих случаях санкции направлены на конкретные виды юридической ответственности. С точки зрения определенности, выделяют два вида санкций: абсолютно-определенные и относительно-определенные. В первом случае речь идет о юридических последствиях, не предусматривающих никаких альтернатив (признание недействительности, передача прав собственности, штраф и т. д.). Во втором случае может рассматриваться несколько вариантов решения (например, в Уголовном кодексе Российской Федерации это может быть штраф либо лишение свободы; рамки действия срока наказания – например, от 5 до 10 лет, и т. д.). Также санкции могут быть штрафными и правовосстановительными.

Разрешение математических гипотез

Доказательство

Математика основана на формальных доказательствах. Сколь бы убедительной гипотеза ни казалась, сколько бы ни было приведено примеров в её подтверждение, гипотеза может быть опровергнута одним контрпримером. Современные математические журналы иногда публикуют результаты исследований о диапазоне, в пределах которого справедливость гипотезы проверена. Например, гипотеза Коллатца проверена для всех целых чисел вплоть до 1,2 × 1012, однако этот факт сам по себе ничего не даёт для доказательства гипотезы.

Для доказательства гипотезы должно быть предъявлено математическое доказательство, которое путём логически безупречного рассуждения на основе некоторой системы аксиом делает единственно возможным утверждение гипотезы или логически невозможным противоположное утверждение.

Когда гипотеза доказана, то в математике она становится теоремой. Теоремой может стать и опровержение явной или неявной гипотезы. В истории математики некоторые гипотезы длительное время существовали в неявной форме, и многочисленные попытки найти квадратуру круга или решение алгебраического уравнения пятой степени в радикалах исходили из опровергнутых впоследствии гипотез о том, что это возможно.

Опровержение

Опровержение гипотезы также осуществляется с помощью доказательства, но с учётом типичных формулировок гипотез опровержение часто является простейшим видом доказательства — контрпримером. Такое доказательство является простейшим с логической точки зрения, однако построение примера в теории графов или поиск примера в теории чисел (гипотеза Эйлера) может быть делом очень непростым. После опровержения гипотеза может стать фактом истории математики, а может трансформироваться в новую математическую гипотезу. Например, гипотеза Эйлера после опровержения трансформировалась в гипотезу Ландера — Паркина — Селфриджа. В этом случае процесс сходен с эволюцией естественнонаучных гипотез.

Неразрешимые гипотезы

Не для всякой гипотезы можно доказать её истинность или ложность в заданной системе аксиом. Согласно теореме Гёделя о неполноте, во всякой достаточно сложной аксиоматической теории, например в арифметике, существуют утверждения, которые нельзя ни опровергнуть, ни доказать в рамках самой теории. Поэтому всякая математическая теория, содержащая арифметику, содержит не опровергаемые и недоказуемые в её рамках гипотезы.

Например, было доказано, что континуум-гипотеза Кантора в теории множеств не зависит от общепринятой системы аксиом Цермело — Френкеля. Поэтому можно принять в качестве аксиомы это утверждение или его отрицание, не приходя к противоречию с остальными аксиомами и без каких-либо последствий для доказанных ранее теорем. В геометрии с древнейших времён сомнения математиков вызывала аксиома параллельности Евклида. Сегодня известно, что если принять противоположную аксиому, то можно построить непротиворечивую геометрию Лобачевского, включающую абсолютную геометрию, то есть с сохранением всех остальных аксиом.

Условные доказательства

Из справедливости некоторых недоказанных гипотез вытекают важные следствия. Если существует широко распространённое мнение, что гипотеза верна, то математики иногда доказывают теоремы, которые верны только при условии справедливости такой гипотезы, в надежде что гипотеза будет доказана. Подобные доказательства распространены, например, в связи с гипотезой Римана.

Типология

Выделяются несколько типов математических гипотез в физике:

  • видоизменяющие, обобщающие известные уравнения — вводящие новые компоненты, составляющие,
  • вводящие в уравнения величины другой природы или другого характера,
  • рассматривающие новые граничные, краевые, предельные условия,

а также их комбинации.

Например, уравнения Максвелла, которые сформулированы путём введения в ранее известные соотношения, описывающие электромагнитные явления, новой компоненты — тока смещения — обобщили ранее известные закономерности, при этом не было введено новых классов величин или других граничных условий. Электронная версия уравнений Максвелла, построенная Лоренцем — пример введения величины иной природы без видоизменения закона. Также характерно рассмотрение величин другой природы в уравнениях квантовой механики, например, уравнение Шрёдингера фактически сохраняет вид классического волнового уравнения, но наделяет его компоненты новым физическим смыслом. Расширение граничных или предельных условий широко используется в общей теории относительности, космологии.

Типы гипотез, используемые в научном исследовании

Существует несколько критериев, которым можно следовать при классификации типов гипотез, используемых в науке. Мы будем знать их ниже.

1. Нулевая гипотеза

Нулевая гипотеза относится к тому, что нет никакой связи между переменными, которые были предметом исследования , Это также называется «гипотезой отсутствия отношений», но ее не следует путать с отрицательными или обратными отношениями. Просто изученные переменные, похоже, не следуют конкретному образцу.

Нулевая гипотеза принимается, если научное исследование приводит к гипотезе работы и альтернативы не наблюдаются.

пример

«Нет никакой связи между сексуальной ориентацией людей и их покупательной способностью».

2. Общие или теоретические гипотезы

Общими или теоретическими гипотезами являются те, которые ученые устанавливают до начала исследования и концептуально без количественной оценки переменных. Как правило, теоретическая гипотеза рождается из процессов обобщения посредством определенных предварительных наблюдений о явлении, которое они хотят изучить.

пример

«Чем выше уровень обучения, тем выше зарплата». В теоретических гипотезах есть несколько подтипов. Например, гипотезы о разнице указывают, что существует разница между двумя переменными, но они не измеряют их интенсивность или величину. Пример: «На факультете психологии учится больше студентов, чем студентов».

3. Рабочая гипотеза

Рабочая гипотеза используется для демонстрации конкретной взаимосвязи между переменными. через научное исследование. Эти гипотезы проверяются или опровергаются с помощью научного метода, поэтому иногда их также называют «операционными гипотезами». Как правило, рабочие гипотезы возникают из дедукции: основываясь на определенных общих принципах, исследователь принимает определенные характеристики конкретного случая. Рабочие гипотезы имеют несколько подтипов: ассоциативный, атрибутивный и причинный.

3.1. ассоциативный

Ассоциативная гипотеза определяет связь между двумя переменными. В этом случае, если мы знаем значение первой переменной, мы можем предсказать значение второй переменной.

пример

«В первый год старшей школы учится вдвое больше учеников, чем во второй год старшей школы».

3.2. атрибутивный

Атрибутивная гипотеза — это та, которая используется для описания событий, которые происходят между переменными. Он используется для объяснения и описания реальных и измеримых явлений.Этот тип гипотезы содержит только одну переменную.

пример

«Большинству бездомных от 50 до 64 лет».

3.3. причинный

Причинная гипотеза устанавливает связь между двумя переменными. Когда одна из двух переменных увеличивается или уменьшается, другая увеличивается или уменьшается. Таким образом, причинная гипотеза устанавливает причинно-следственную связь между изучаемыми переменными. Чтобы определить причинную гипотезу, необходимо установить причинную связь или статистическую (или вероятностную) связь. Также возможно проверить эту связь путем опровержения альтернативных объяснений. Эти гипотезы следуют предпосылке: «Если X, то Y».

пример

«Если игрок тренируется дополнительный час каждый день, его процент успеха в бросках увеличивается на 10%».

Альтернативные гипотезы пытаются предложить ответ на тот же вопрос, что и рабочие гипотезы. , Тем не менее, и как это можно сделать из его наименования, альтернативная гипотеза исследует различные отношения и объяснения. Таким образом, можно исследовать различные гипотезы в ходе одного и того же научного исследования. Этот тип гипотезы также можно подразделить на атрибутивные, ассоциативные и причинные.

Требования, предъявляемые к гипотезе:

  • совместимость с существующими знаниями, фундаментальными научными положениями, ранее установленными фактами;
  • понятность и логичность, отсутствие двоякого толкования;
  • обоснованность (релевантность), то есть проверенная анализом состоятельность выдвинутой теории;
  • она должна быть проверяемой (наблюдением, измерительными приборами, экспериментальными установками и другими достоверными доступными средствами).

Стандартная структура гипотезы состоит из двух частей: эмпирического основания (посылки) и основанного на нем предположения (заключения). Ее выдвижение является результатом объемной работы, которая включает изучение теоретических основ, сбор материала, его анализ, проведение экспериментов и наблюдений. Основные этапы подготовки:

  1. накопление материала, предположений, догадок об исследуемом объекте или явлении;
  2. формулирование следствий, вытекающих из предположительной теории, выдвижение предварительных ответов и решений поставленной проблемы;
  3. опровержение предположений, оказавшихся несостоятельными, их замена на достоверные, соответствующие полученным фактическим данным;
  4. проверка сделанных выводов на практике.

Для подтверждения (или, напротив, опровержения) гипотезы необходимо соблюсти правила логики. Так, заключение (тезис или антитезис) должно быть точным и ясным, неизменным в процессе исследования. В качестве оснований (аргументов) принимаются только истинные факты, уже установленные ранее.

Аргументация должна быть достаточной для формулирования окончательного заключения. Если проверка показывает, что поставленное ученым предположительное утверждение соответствует действительности, гипотеза получает статус научной теории, которая требует дальнейшего изучения и исследования, всестороннего развития.

Не исключено и опровержение гипотезы, обоснованное ложностью ее заключения. В этом случае идут путем фальсификации, устанавливая несоответствие фактов, вытекающих из предположения, следствиям, или при помощи доказательства антитезиса (противоположного гипотезе следствия). Если антитезис доказан, логически это означает несостоятельность (ложность) исходного тезиса.

Гипотеза в философии и других науках

Карл Поппер в философии науки дополнил позитивистский принцип верифицируемости принципом фальсифицируемости. Естественнонаучная теория не может быть окончательно подтверждена опытом. Опыт может её только опровергнуть. Любое научное знание носит лишь относительный, гипотетический характер. Рост научного знания осуществляется благодаря выдвижению и опровержению (фальсификации) гипотез. Научными могут быть только проверяемые (потенциально опровергаемые) утверждения. Такие взгляды, вытекающие из марксистского постулата об относительности истины и любого знания, разделяют и современные российские философы.

Ученик Поппера Лакатос развил концепцию учителя. Отдельную (естественнонаучную) теорию, которая неизбежно опровергается, нельзя рассматривать как научную. Научной может быть только «исследовательская программа» — последовательность опровергаемых и сменяющих друг друга теорий-гипотез. Геоцентрическая механика Птолемея, гелиоцентрическая механика Галилея и Кеплера, классическая механика Ньютона и Галилея, релятивистская механика, квантовая механика, квантовая теория поля,…

Выдвижение гипотезы

Для выдвижения гипотезы потребуется иметь некоторые факты, относящиеся к определенному явлению, и они должны обосновывать вероятность предположения, пояснять неизвестное. Поэтому вначале происходит сбор материалов, знаний и фактов, относящихся к определенному явлению, которое будет в дальнейшем поясняться.

На основании материалов высказывается предположение о том, что же представляет собой данное явление, или, другими словами, формулируется гипотеза в узком смысле. Предположение в данном случае представляет собой некое суждение, которое высказывают в результате обработки собранных фактов. Факты, на которых сделана гипотеза, можно логически осмыслить. Вот так появляется основное содержание гипотезы. Предположение должно отвечать на вопросы о сущности, причинах возникновения явления и так далее.

Гипотеза Геи

Эту гипотезу сформулировал в 1960-х годах ученый Джеймс Лавлок, который назвал Землю саморегулирующимся организмом. Это не означает, что Земля действительно живая, она лишь состоит из сложных составляющих, которые очень удачно и умело взаимодействуют.

Согласно гипотезе Геи, эти взаимодействия работают настолько слаженно, что поддерживают Землю в состоянии, необходимом для сохранения жизни.

Сам учёный Джеймс Лавлок доказывает гипотезу как минимум теми фактами, что температура земной поверхности остаётся очень стабильной, несмотря на увеличение количества солнечной радиации. Также он отметил постоянство солёности океана и состава атмосферы, несмотря на факты, которые должны были вывести их из равновесия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector