Библиотека постов medstatistic об анализе медицинских данных

Литература

  • Гмурман В. Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов. — 10-е издание, стереотипное. — Москва: Высшая школа, 2004. — 479 с. — ISBN 5-06-004214-6.
  • Елисеева И. И., Юзбашев М. М. Общая теория статистики: Учебник / Под ред. И. И. Елисеевой. — 4-е издание, переработанное и дополненное. — Москва: Финансы и Статистика, 2002. — 480 с. — ISBN 5-279-01956-9.
  • Общая теория статистики: Учебник / Под ред. Р. А. Шмойловой. — 3-е издание, переработанное. — Москва: Финансы и Статистика, 2002. — 560 с. — ISBN 5-279-01951-8.
  • Суслов В. И., Ибрагимов Н. М., Талышева Л. П., Цыплаков А. А. Эконометрия. — Новосибирск: СО РАН, 2005. — 744 с. — ISBN 5-7692-0755-8.

Примеры

Необходимо определить взаимосвязь двух переменных: уровня интеллектуального развития (по данным проведенного тестирования) и количества опозданий за месяц (по данным записей в учебном журнале) у школьников.

Исходные данные представлены в таблице:

Данные по уровню IQ (x)

Данные по количеству опозданий (y)

1

100

6

2

115

2

3

117

1

4

119

1

5

134

2

6

94

8

7

105

3

8

103

4

9

111

3

10

124

Сумма

1122

30

Среднее арифметическое

112,2

3

Чтобы дать правильную интерпретацию полученному показателю, необходимо проанализировать знак коэффициента корреляции (+ или -) и его абсолютное значение (по модулю).

В соответствии с таблицей классификации коэффициента корреляции по силе делаем вывод о том, rxy = -0,827 – это сильная отрицательная корреляционная зависимость. Таким образом, количество опозданий школьников имеет очень сильную зависимость от их уровня интеллектуального развития. Можно сказать, что ученики с высоким уровнем IQ опаздывают реже на занятия, чем ученики с низким IQ.

Важно! Принято считать, что чем r ближе по модулю к 1, тем ближе связь между анализируемыми переменными к линейной. Если величина r близка к -1, то связь обратная (c возрастанием переменной х переменная у убывает).. Коэффициент корреляции может применяться как учеными для подтверждения или опровержения предположения о зависимости двух величин или явлений и измерения ее силы, значимости, так и студентами для проведения эмпирических и статистических исследований по различным предметам

Необходимо помнить, что этот показатель не является идеальным инструментом, он рассчитывается лишь для измерения силы линейной зависимости и будет всегда вероятностной величиной, которая имеет определенную погрешность

Коэффициент корреляции может применяться как учеными для подтверждения или опровержения предположения о зависимости двух величин или явлений и измерения ее силы, значимости, так и студентами для проведения эмпирических и статистических исследований по различным предметам. Необходимо помнить, что этот показатель не является идеальным инструментом, он рассчитывается лишь для измерения силы линейной зависимости и будет всегда вероятностной величиной, которая имеет определенную погрешность.

Корреляционный анализ применяется в следующих областях:

  • экономическая наука;
  • астрофизика;
  • социальные науки (социология, психология, педагогика);
  • агрохимия;
  • металловедение;
  • промышленность (для контроля качества);
  • гидробиология;
  • биометрия и т.д.

Причины популярности метода корреляционного анализа:

  1. Относительная простота расчета коэффициентов корреляции, для этого не нужно специальное математическое образование.
  2. Позволяет рассчитать взаимосвязи между массовыми случайными величинами, которые являются предметом анализа статистической науки. В связи с этим этот метод получил широкое распространение в области статистических исследований.

Надеюсь, теперь вы сможете отличить функциональную взаимосвязь от корреляционной и будете знать, что когда вы слышите по телевидению или читаете в прессе о корреляции, то под ней подразумевают положительную и достаточно значимую взаимозависимость между двумя явлениями.

Пример корреляции Спирмена

Необходимо установить наличие корреляционной связи между рабочим стажем и показателем травматизма при наличии следующих данных:

Рабочий стаж в годах  Травматизм на 100 работающих
до 1 года 24
1-2 16
3-4 12
5-6 12
7 и более 6

Наиболее подходящим методом анализа является ранговый метод, т.к. один из признаков представлен в виде открытых вариантов: рабочий стаж до 1 года и рабочий стаж 7 и более лет.

Решение задачи начинается с ранжирования данных, которые сводятся в рабочую таблицу и могут быть выполнены вручную, т.к. их объем не велик:

Рабочий стаж Число травм Порядковые номера  (ранги) Разность рангов Квадрат разности рангов
d(х-у)
до 1 года 24 1 5 -4 16
1-2 16 2 4 -2 4
3-4 12 3 2,5 +0,5 0,25
5-6 12 4 2,5 +1,5 2,5
7 и более 6 5 1 +4 16
Σ d2 = 38,5

Появление дробных рангов в колонке связано с тем, что в случае появления вариант одинаковых по величине находится среднее арифметическое значение ранга. В данном примере показатель травматизма 12 встречается дважды и ему присваиваются ранги 2 и 3, находим среднее арифметическое этих рангов (2+3)/2= 2,5 и помещаем это значение в рабочую таблицу для 2 показателей. Выполнив подстановку полученных значений в рабочую формулу и произведя несложные расчёты получаем коэффициент Спирмена равный -0,92

Отрицательное значение коэффициента свидетельствует о наличии обратной связи между признаками и позволяет утверждать, что небольшой стаж работы сопровождается большим числом травм. Причем, сила связи этих показателей достаточно большая. Следующим этапом расчётов является определение достоверности полученного коэффициента: • рассчитывается его ошибка и критерий Стьюдента

Какие бывают типы взаимосвязи событий?

Каждый день на бытовом уровне мы переживаем череду событий. Одни из них влияют на другие, хотя не всегда такое влияние очевидно. По степени логической обусловленности можно выделить два главных класса последовательностей событий:

  • функционально зависимые, имеющие очевидную жесткую причинно-следственную связь: злоупотребление алкоголем приводит к болезням печени; использование зимних шин уменьшает риск аварии на скользкой и заснеженной дороге;
  • стохастические, или случайные: в понедельник самые большие дорожные пробки; средний уровень интеллекта у блондинки ниже, чем у брюнетки; люди, рожденные зимой, более серьезны и ответственны, чем те, у кого день рождения летом. Такая зависимость не может быть доказана логическим путем.

Подтвердить или опровергнуть стохастические утверждения можно только с помощью статистики, которая занимается подсчетом количества совпадений между независимыми явлениями. В результате можно сделать прогноз о том, насколько вероятно наступление того или иного события.

К числу подобных предсказаний можно отнести, например, народные приметы. Например, если человек утром встал с левой ноги, принято считать, что день сложится неудачно. Физиология не выявляет взаимной связи между этими событиями. Однако прямой подсчет может показать, что такое утверждение справедливо в трех случаях из четырех. Значит, можно предсказывать наступление события с соответствующей вероятностью в 75%.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

курение

смертность

Фермеры, лесники и рыбаки

77

84

Шахтеры и работники карьеров

137

116

Производители газа, кокса и химических веществ

117

123

Изготовители стекла и керамики

94

128

Работники печей, кузнечных, литейных и прокатных станов

116

155

Работники электротехники и электроники

102

101

Инженерные и смежные профессии

111

118

Деревообрабатывающие производства

93

113

Кожевенники

88

104

Текстильные рабочие

102

88

Изготовители рабочей одежды

91

104

Работники пищевой, питьевой и табачной промышленности

104

129

Производители бумаги и печати

107

86

Производители других продуктов

112

96

Строители

113

144

Художники и декораторы

110

139

Водители стационарных двигателей, кранов и т. д.

125

113

Рабочие, не включенные в другие места

133

146

Работники транспорта и связи

115

128

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

105

115

Канцелярские работники

87

79

Продавцы

91

85

Работники службы спорта и отдыха

100

120

Администраторы и менеджеры

76

60

Профессионалы, технические работники и художники

66

51

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Почему важна отрицательная корреляция

Отрицательная корреляция важна для любого аналитика, инвестора или человека, который хочет диверсифицировать и хеджировать свои ставки. Если инвестор сможет найти инвестиционный класс, который движется напротив другого набора активов, который он держит, он может инвестировать в оба, чтобы стабилизировать свой портфель. Известно, что товары, как правило, движутся в противоположном направлении на фондовом рынке. Если у инвестора есть портфель со 100% распределением публичных акций, он может продать часть своих акций для покупки драгоценных металлов, таким образом балансируя свой портфель от волатильности.

Однако, хотя отрицательная корреляция может быть использована для снижения риска портфеля, она также может создать ситуацию, когда инвестор не может выиграть

Если два класса активов совершенно отрицательно коррелированы, любые прибыли в одном классе полностью компенсируются другим.Поэтому важно найти две разные инвестиции, которые имеют небольшую отрицательную корреляцию. Таким образом, если соотношение между запасами и товарами составляет -0

40, инвестор может уменьшить, но не полностью компенсировать свои потери в периоды, когда акции движутся вниз и все еще зарабатывают деньги, когда акции растут в цене.

Выборочный коэффициент корреляции

Коэффициент корреляции обычно рассчитывают по выборке. Значит, у аналитика в распоряжении не истинное значение, а оценка, которая всегда ошибочна. Если выборка была репрезентативной, то истинное значение коэффициента корреляции находится где-то относительно недалеко от оценки. Насколько далеко, можно определить через доверительные интервалы.

Согласно Центральное Предельной Теореме распределение оценки любого показателя стремится к нормальному с ростом выборки. Но есть проблемка. Распределение коэффициента корреляции вблизи придельных значений не является симметричным. Ниже пример распределения при истинном коэффициенте корреляции ρ = 0,86.

Предельное значение не дает выйти за 1 и, как бы «поджимает» распределение справа. Симметричная ситуация наблюдается, если коэффициент корреляции близок к -1.

В общем рассчитывать на свойства нормального распределения нельзя. Поэтому Фишер предложил провести преобразование выборочного коэффициента корреляции по формуле:

Распределение z для тех же r имеет следующий вид.

Намного ближе к нормальному. Стандартная ошибка z равна:

Далее исходя из свойств нормального распределения несложно найти верхнюю и нижнюю границы доверительного интервала для z. Определим квантиль стандартного нормального распределения для заданной доверительной вероятности, т.е. количество стандартных отклонений от центра распределения.

cγ – квантиль стандартного нормального распределения;N-1 – функция обратного стандартного распределения;γ – доверительная вероятность (часто 95%).Затем рассчитаем границы доверительного интервала.

Нижняя граница z:

Верхняя граница z:

Теперь обратным преобразованием Фишера из z вернемся к r.Нижняя граница r:

Верхняя граница r:

Это была теоретическая часть. Переходим к практике расчетов.

Использование ПО при проведении корреляционного анализа

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках.

Исходные данные для корреляционного анализа

Профессиональная группа

курение

смертность

Фермеры, лесники и рыбаки

77

84

Шахтеры и работники карьеров

137

116

Производители газа, кокса и химических веществ

117

123

Изготовители стекла и керамики

94

128

Работники печей, кузнечных, литейных и прокатных станов

116

155

Работники электротехники и электроники

102

101

Инженерные и смежные профессии

111

118

Деревообрабатывающие производства

93

113

Кожевенники

88

104

Текстильные рабочие

102

88

Изготовители рабочей одежды

91

104

Работники пищевой, питьевой и табачной промышленности

104

129

Производители бумаги и печати

107

86

Производители других продуктов

112

96

Строители

113

144

Художники и декораторы

110

139

Водители стационарных двигателей, кранов и т. д.

125

113

Рабочие, не включенные в другие места

133

146

Работники транспорта и связи

115

128

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

105

115

Канцелярские работники

87

79

Продавцы

91

85

Работники службы спорта и отдыха

100

120

Администраторы и менеджеры

76

60

Профессионалы, технические работники и художники

66

51

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

https://www.youtube.com/watch?v=ytcreatorsru

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ (массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

Взаимосвязи вокруг нас

В человеке живет интуитивное ощущение взаимосвязи всех явлений. В фантастическом рассказе Рэя Брэдбери герой попадает в далекое прошлое и, нарушая запрет, сходит с тропы. Он лишь раздавил бабочку. Но вернулся в другой мир, с другим языком и даже президентом. Все связано вокруг…

При чем здесь корреляция? А при том, что пытливое сознание человека пытается выявлять корреляции. Зная взаимосвязи между явлениями, на них можно влиять, ими можно управлять.

Я не буду «грузить» вас математической терминологией, сложными формулами. Давайте разберемся в сути этого понятия; уясним что значит отрицательная и положительная корреляция; значимая и незначимая.

Что представляет собой корреляция?

Термин «корреляция» пугает многих людей и кажется чем-то сложным и непонятным. Однако на практике ничего устрашающего в ней нет. Корреляция – это всего лишь показатель, показывающий зависимость между событиями или объектами.

Данное понятие применяется в экономическом и статистическом анализе, психологии, биологии, математике. Например, если посмотреть на небо и увидеть густые и темные тучи, то можно прийти к выводу, что скоро пойдет дождь. Однако наше умозаключение не дает 100% гарантии. Это и является отличительной особенностью корреляцию от линейной зависимости.

Что такое корреляция?

Корреляция – это взаимозависимость случайных факторов. Она отображает приближенную взаимосвязь и не дает точных ответов. Например, в стране выросла безработица и увеличилось количество преступлений. Можно предположить, что на второй фактор повлияли первый. Но на уровень преступности также влияют воспитание, менталитет людей, уровень образования. Составить точный прогноз нереально, так как всегда есть дополнительные факторы.

Связь может быть трех видов:

  • сильной;
  • слабой;
  • отсутствовать.

Например, повышения уровня радиации негативно сказывается на здоровье человека. Межу событиями имеется обратно пропорциональная зависимость – увеличения радиации приводит к ухудшению здоровья. Коэффициент корреляции при этом имеет отрицательное значение.

Некоторые события или явления практически никак не связаны друг с другом. Утром у вас разрядился телефон, а вчера в маршрутке вам на ногу наступил мужчина. Ни одно из событий не влияет на другое. В данном случае коэффициент корреляции равен нулю.

Если коэффициент больше нуля и стремится к 1, то такая корреляция называется положительной. Она показывает прямую взаимосвязь между событиями. Например, чем выше уровень знаний, тем выше шансы поступить в университет на бюджет.

Корреляция цены на нефть и курса доллара

Цена на нефть и курс американского доллара имеют обратную корреляционную связь. При росте стоимости «черного золота» курс доллара снижается и наоборот.

США обладают самой мощной промышленностью в мире и на ее нужды требуется просто огромное количество нефти.  В то же время Штаты входят в первую десятку стран по уровню добычи этого природного ресурса. При этом США значительную часть добытой нефти экспортируют, что вызывает дефицит в промышленности. Для его покрытия американцы ежегодно импортируют свыше 8 миллиардов баррелей нефти.

Данного объема достаточно для влияния на курс национальной валюты. Увеличение спроса США на нефть приводит к увеличению цены на международном рынке. В свою очередь, рост объемов импорта влияет на стоимость произведенных товаров. В итоге на валютном рынке наблюдается избыток американской валюты, и ее курс начинает падать.

Корреляция в управлении инвестиционными активами

Корреляция активно используется инвесторами при формировании и управлении своих инвестиционных портфелях. Логично, что нельзя держать все свои активы в одном месте. Диверсификация позволяет значительно снизить риски.

Например, инвестор покупает акции одной крупной компании и нескольких мелких. Коэффициент корреляции акций гигантов отрасли и небольших предприятий приблизительно равен +0,8. Это достаточно большое значение и оно характеризует прямую зависимость между объектами. При падении акции крупной компании существует большая вероятность, что стоимость ценных бумаг небольших фирм тоже снизится существенная. В данном случае лучше подбирать активы таким образом, что корреляционные связи были минимальными.

Для этого, например, инвестор может составить свой портфель из акций и облигаций или акций и казначейских векселей. Облигации между собой, как и акции, также имеют прямую связь. Их коэффициент еще выше. Однако между облигациями и акциями такой зависимости нет, что и позволяет инвестору снизить риски.

Также наблюдается зависимость между странами и даже регионами. Чем ближе они находятся, тем выше коэффициент корреляции. Например, для Канады и США он составляет 0,9. В то же время для Японии и США он на 4 десятых меньше. Собственно, инвестору более выгодно покупать активы эмитентов из разных регионов.

Золото и ценные бумаги практически не коррелируются. Однако серебро и золото очень зависимы друг от друга, так же, как и евро и американский доллар. Их использование в рамках одного инвестиционного портфеля нецелесообразно.

Корреляция – это удобный и необходимый инструмент в различных сферах жизни. Она не является панацеей, но позволяет достаточно точно установить причинно-следственные связи между явлениями.

Понятие корреляции

Корреляция (от латинского «correlatio» – соотношение, взаимосвязь) – математический термин, который означает меру статистической вероятностной зависимости между случайными величинами (переменными).

Пример: возьмем два вида взаимосвязи:

  1. Первый – ручка в руке человека. В какую сторону движется рука, в такую сторону и ручка. Если рука находится в состоянии покоя, то и ручка не будет писать. Если человек чуть сильнее надавит на нее, то след на бумаге будет насыщеннее. Такой вид взаимосвязи отражает жесткую зависимость и не является корреляционным. Это взаимосвязь – функциональная.
  2. Второй вид – зависимость между уровнем образования человека и прочтением литературы. Заранее неизвестно, кто из людей больше читает: с высшим образованием или без него. Эта связь – случайная или стохастическая, ее изучает статистическая наука, которая занимается исключительно массовыми явлениями. Если статистический расчет позволит доказать корреляционную связь между уровнем образованности и прочтением литературы, то это даст возможность делать какие-либо прогнозы, предсказывать вероятностное наступление событий. В этом примере с большой долей вероятности можно утверждать, что больше читают книги люди с высшим образованием, те, кто более образован. Но поскольку связь между данными параметрами не функциональная, то мы можем и ошибиться. Всегда можно рассчитать вероятность такой ошибки, которая будет однозначно невелика и называется уровнем статистической значимости (p).

Примерами взаимосвязи между природными явлениями являются: цепочка питания в природе, организм человека, который состоит из систем органов, взаимосвязанных между собой и функционирующих как единое целое.

Каждый день мы сталкиваемся с корреляционной зависимостью в повседневной жизни: между погодой и хорошим настроением, правильной формулировкой целей и их достижением, положительным настроем и везением, ощущением счастья и финансовым благополучием. Но мы ищем связи, опираясь не на математические расчеты, а на мифы, интуицию, суеверия, досужие домыслы. Эти явления очень сложно перевести на математический язык, выразить в цифрах, измерить. Другое дело, когда мы анализируем явления, которые можно просчитать, представить в виде цифр. В таком случае мы можем определить корреляцию с помощью коэффициента корреляции (r), отражающего силу, степень, тесноту и направление корреляционной связи между случайными переменными.

Сильная корреляция между случайными величинами – свидетельство наличия некоторой статистической связи конкретно между этими явлениями, но эта связь не может переноситься на эти же явления, но для другой ситуации. Часто исследователи, получив в расчетах значительную корреляцию между двумя переменными, основываясь на простоте корреляционного анализа, делают ложные интуитивные предположения о существовании причинно-следственных взаимосвязей между признаками, забывая о том, что коэффициент корреляции носит вероятностный характер.

Пример: количество травмированных во время гололеда и число ДТП среди автотранспорта. Эти величины будут коррелировать между собой, хотя они абсолютно не взаимосвязаны между собой, а имеют только связь с общей причиной этих случайных событий – гололедицей. Если же анализ не выявил корреляционной взаимосвязи между явлениями, это еще не является свидетельством отсутствия зависимости между ними, которая может быть сложной нелинейной, не выявляющейся с помощью корреляционных расчетов.

Первым, кто ввел в научный оборот понятие корреляции, был французский палеонтолог Жорж Кювье. Он в XVIII веке вывел закон корреляции частей и органов живых организмов, благодаря которому появилась возможность восстанавливать по найденным частям тела (останкам) облик всего ископаемого существа, животного. В статистике термин корреляции впервые применил в 1886 году английский ученый Френсис Гальтон. Но он не смог вывести точную формулу для расчета коэффициента корреляции, но это сделал его студент – известнейший математик и биолог Карл Пирсон.

Корреляция по Спирмену или основа корреляционного анализа

Для того чтобы понять, что такое корреляционный анализ, изначально следует уяснить понятие корреляции.

При этом, какое-либо изменение значения одной из этих величин или сразу нескольких, влечет за собой систематическое изменение значения иной (других) величин.

Математическая мера корреляции таких величин или значений, это корреляционное отношение, которое и есть коэффициентом корреляции.

В случаях, когда изменения одной из случайных величин не приводит к закономерным изменениям другой или других величин, но при этом ее/их статистические характеристики изменяются, то такого рода связь корреляционной не является, а относится к статистической.

РЕКОМЕНДУЕМ В 2020-м: ЛУЧШИЕ ФОРЕКС БРОКЕРЫ + БРОКЕРЫ ОПЦИОНОВ

2007 год. The Financial Commission. |
+ 20% К ДЕПОЗИТУ | обзор | отзывы

2017 год. VFSC, ЦРОФР. | ОТКРЫТЬ СЧЕТ В FINMAXFX | обзор | отзывы
1998 год. FCA, НАУФОР. | CASHBACK х 2 | обзор | отзывы
*БО. Не требуется верификация! | обзор | отзывы | НАЧАТЬ ТОРГОВЛЮ С 10$
*БО. Выгодные условия. | обзор | отзывы | ПЕРЕЙТИ НА САЙТ

Что касается коэффициента ранговой корреляции по Спирмену, то это непараметрическая метода, использующаяся для статистических изучений связей между случайными явлениями. В данном случае, производится определение степени параллелизма между 2-мя количественными рядами исследуемых признаков, а также определяется теснота данной связи при помощи коэффициента, выраженного количественно.

Практически корреляционный анализ Спирмена (расчет коэффициента ранговой корреляции) производится по таким этапам:

каждый из признаков сопоставляется по рангу (порядковому номеру) по возрастанию/убыванию;определяется разность рангов по каждой паре сопоставляемых значений;каждая разность возводится во 2-ю степень и полученные результаты суммируются;вычисляется непосредственно коэффициент ранговой корреляции (R=1- 6∑d^2 n (n-1)), то есть коэффициент Спирмена.

Интерпретация значений данного коэффициента (сила связи между признаками) выглядит следующим образом:

  • очень слабая (0 <r ≪ 0,3);
  • слабая (0,3 <r ≪ 0,5);
  • средняя (0, 5 <r ≪ 0,7);
  • высокая (0,7 <r ≪ 0, 9);
  • очень высокая (0,9 <r <1).

Рассчитать коэффициент ранговой корреляции по Спирмену, можно при помощи специальных онлайн калькуляторов, которые Вы найдете на специализированных веб-площадках.

Вам пригодиться: полная версия — Корреляционный анализ (pdf)

Коэффициент Спирмена и его применение в корреляционном анализе

Теперь давайте на примере рассмотрим, как данный коэффициент по Спирмену применяется на практике. Итак, корреляционный анализ Спирмена является не чем иным, как инструментом (своего рода индикатором) тех.анализа, который определяет закономерность связи между валютами в определенной паре.

В таком случае, все сводится к тому, что коэффициент Спирмена не только определяет степень идентичности определенного графического участка относительно иного, но еще и показывает если можно так сказать вклад конкретной свечи. На примере ниже мы видим, как проводится корреляционный анализ рыночного участка последовательности из 14 свечей.

Для анализа были взяты две последовательности (расчетная и контрольная) каждая из 14-ти свечей. Цены закрытия свечей данных последовательностей распределяются по рангам – ниже цена закрытия – ниже ранг.

Корреляционный анализ по Спирмену, при расчете учитывает исключительно ценовой ранг, но не ее значение. Здесь рассчитывается разность рангов по каждому бару, а полученный результат возводится во 2-ю степень.

После этого подставляем значения в формулу расчета ранговой корреляции по Спирмену:

где N – является количеством свечей в анализируемой последовательности.

Сравнивая таким образом свечные ранги внутри исследуемой последовательности (14 свечей), трейдер может определить степень схожести 2-х участков – чем выше будет значение коэффициента Спирмена, тем больше вероятность, что последовательность повториться. Как мы уже говорили выше, данный коэффициент можно рассчитать в онлайн режиме с помощью специальных калькуляторов.

ЛУЧШИЕ ФОРЕКС БРОКЕРЫ, ПО ДАННЫМ РОССИЙСКОГО РЕЙТИНГА НА 2020 ГОД:

1998 год. FCA, НАУФОР.   ВОЗВРАЩАЕМ 20% ОТ ТОРГОВЛИ | обзор / отзывы

2007 год. FinaCom.   КЕШБЭК 16$ С ЛОТА! | обзор / отзывы

2007 год. 260 представительств.
STARTUP БОНУС $1500 | обзор / отзывы

1997 год. Нацбанк РБ.   ИЗ 50$ ДО 5.000$ | обзор / отзывы

А ТАКЖЕ ЛУЧШИЕ БРОКЕРЫ БИНАРНЫХ ОПЦИОНОВ НА СЕГОДНЯ:

Самые выгодные условия!
  ТОРГОВЛЯ БЕЗ ВЕРИФИКАЦИИ | обзор / отзывы

Обновленные платформы.
  ОТКРЫТЬ СЧЕТ В BINARY | обзор / отзывы

Литература

  • Гмурман В. Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов. — 10-е издание, стереотипное. — Москва: Высшая школа, 2004. — 479 с. — ISBN 5-06-004214-6.
  • Елисеева И. И., Юзбашев М. М. Общая теория статистики: Учебник / Под ред. И. И. Елисеевой. — 4-е издание, переработанное и дополненное. — Москва: Финансы и Статистика, 2002. — 480 с. — ISBN 5-279-01956-9.
  • Общая теория статистики: Учебник / Под ред. Р. А. Шмойловой. — 3-е издание, переработанное. — Москва: Финансы и Статистика, 2002. — 560 с. — ISBN 5-279-01951-8.
  • Суслов В. И., Ибрагимов Н. М., Талышева Л. П., Цыплаков А. А. Эконометрия. — Новосибирск: СО РАН, 2005. — 744 с. — ISBN 5-7692-0755-8.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector