Сколько у нас генов?
Содержание:
Как работают гены
Гены можно разделить на две группы – структурные и регуляторные. В структурных генах хранится информация о полипептидных цепях – это собственно признаки. Регуляторные, или функциональные гены включают и выключают структурные гены.
Назначение структурного гена в любом организме – в нужный момент обеспечить появление в клетке белка, который он кодирует. Чтобы это произошло, задействуются различные части гена.
Так, промотор, который находится перед белок-кодирующей частью, задает основные характеристики активности гена. Промотор определяет, в каких клетках будет работать ген, насколько долго и с какой интенсивностью. В конце гена находится терминатор – это сигнал конца цепочки.
РНК-полимераза проходит путь от промотора до терминатора и выполняет синтез матричной РНК – своеобразной инструкции для синтеза белка, правильного расположения в нем нужных аминокислот. Этот процесс называют транскрипцией.
Регуляторные гены – это гены-регуляторы и гены-операторы. Оператор непосредственно связан с определенной группой структурных генов (и такая конструкция называется «оперон»). Регулятор через белок-репрессор воздействует на структурные гены и обеспечивает синтез белка – трансляцию.
В синтезе белка участвует два десятка аминокислот. Каждые три нуклеотида ДНК кодируют определенную аминокислоту. Трансляция происходит на базе РНК-копии гена из ДНК:
-
Матричная РНК выходит из ядра клетки в цитоплазму и связывается с рибосомой.
-
В рибосоме синтезируется РНК-копия гена по инструкции из матричной РНК. Затем у этой РНК-копии будет синтезироваться белок.
-
Из РНК-копии удаляются нитроны – нуклеотиды, которые не нужны для синтеза белка.
-
Оперон начинает реакцию по синтезу белка. Пока молекул белка недостаточно, белок-репрессор неактивен.
-
Как только накопилось достаточно молекул синтезируемого белка, белок-репрессор активируется.
-
Он связывается с геном-оператором.
-
После связывания синтез белка прекращается.
Классификация
Структура гена содержит в себе не только информацию о белке, но и указания, когда и как ее считывать, а также пустые участки, необходимые для разделения информации о разных белках и остановки синтеза информационной молекулы.
Существует две формы генов:
- Структурные – они содержат в себе информацию о строении белков или цепей РНК. Последовательность нуклеотидов соответствует расположению аминокислот.
- Функциональные гены отвечают за правильную структуру всех остальных участков ДНК, за синхронность и последовательность ее считывания.
На сегодняшний день ученые могут ответить на вопрос: сколько генов в хромосоме? Ответ вас удивит: около трех миллиардов пар. И это только в одной из двадцати трех. Геном называется наименьшая структурная единица, но она способна изменить жизнь человека.
Зарождение генетики
Какого цвета твои глаза, волосы, кожа? Почему у тебя такие же вьющиеся волосы, как и у твоей мамы? Почему ты очень похож на своих родителей, но не являешься их полной копией? Почему листики одного дерева такие разные? Ответы на все эти вопросы дает один из самых интересных разделов биологии — генетика.
Первые шаги
В течение очень длительного периода людям была непонятна причина схожести родственных организмов. Ситуация изменилась в 60-х гг. XX в., когда австрийский биолог и ботаник, монах августинского монастыря в Брно Грегор Мендель начал проводить опыты на горохе в монастырском саду. Он хотел узнать, каким образом определенные признаки живых существ передаются из одного поколения в другое.
Грегор Мендель
Следующий научный шаг в изучении генетики был сделан в 1909 г. датским биологом профессором Вильгельмом Иогансеном, который ввел и объяснил термин «ген». Несколько позже, в 1923 г., американский биолог Томас Морган доказал, что гены находятся в хромосомах, и сформулировал хромосомную теорию наследственности. С тех пор генетика стала развиваться на уровне гена.
Опыты Менделя
Менделя интересовали высота растения, цвет цветков и форма горошин. Занимаясь перекрестным опылением гороха, он тщательно анализировал получаемые результаты и наблюдал, какие именно признаки и в каком поколении передавались по наследству. Причем каждый раз в перекрестном опылении участвовали специально отобранные растения с теми признаками, которые, как думал Мендель, обязательно должны передаться последующему поколению.
В чем заключалась суть экспериментов биолога?
Одним из признаков, которые исследовал Мендель, был цвет цветков гороха. В своих первых опытах он отобрал только те сорта, которые цветут белыми и красными цветками. Мендель был уверен, что после скрещивания в первом поколении (поколение F1) будут растения как с белыми, так и с красными цветками. Каково же было его удивление, когда абсолютно все цветки оказались красными!
Такой результат не только не остановил ученого, но и заставил продолжить эксперименты. Мендель опылил цветки полученных растений первого поколения их же пыльцой и ожидал совершенно логичного результата — красных цветков. Но снова его предположения не оправдались: во втором поколении (поколение F2) 75% всех цветков были красными, а оставшиеся 25% — белыми!
В чем причина?
Такой неожиданный результат вовсе не огорчил ученого. Благодаря полученным данным он пришел к выводу о том, что у каждого растения не один, а два гена, которые принимают участие в передаче определенных признаков. Он назвал красный цвет гороха главным, доминантным, а белый — рецессивным, уступающим признаком.
При наличии двух разных генов (например, красного и белого), определяющим при цветении будет доминантный ген. Поэтому, если у растения есть оба гена (красный и белый), на цвет цветка будет влиять доминантный ген красного цвета. А тот факт, что среди дочерних растений могут быть и цветки белого цвета, говорит лишь о наличии этого гена у растения.
История термина
Грегор Мендель
Термин «ген» был введён в употребление в 1909 году датским ботаником Вильгельмом Иогансеном три года спустя после введения Уильямом Бэтсоном термина «генетика». За 40 лет до появления понятия «ген» Чарльз Дарвин в 1868 году предложил «временную гипотезу» пангенеза, согласно которой все клетки организма отделяют от себя особые частицы, или геммулы, а из них, в свою очередь, образуются половые клетки. Затем Гуго де Фриз в 1889 году, спустя 20 лет после Ч. Дарвина, выдвинул свою гипотезу внутриклеточного пангенеза и ввел термин «панген» для обозначения имеющихся в клетках материальных частиц, которые отвечают за вполне конкретные отдельные наследственные свойства, характерные для данного вида. Геммулы Ч. Дарвина представляли ткани и органы, пангены де Фриза соответствовали наследственным признакам внутри вида. Ещё через 20 лет В. Иогансен счёл удобным пользоваться только второй частью термина Гуго де Фриза «ген» и заменить им неопределенное понятие «зачатка», «детерминанта», «наследственного фактора». При этом В. Иогансен подчеркивал, что «этот термин совершенно не связан ни с какими гипотезами и имеет преимущество вследствие своей краткости и легкости, с которой его можно комбинировать с другими обозначениями». В. Иогансен сразу же образовал ключевое производное понятие «генотип» для обозначения наследственной конституции гамет и зигот в противоположность фенотипу.
Изучением генов занимается наука генетика, родоначальником которой считается Грегор Мендель, который в 1865 году опубликовал результаты своих исследований о передаче по наследству признаков при скрещивании гороха. Сформулированные им закономерности впоследствии назвали законами Менделя.
Среди учёных нет единого мнения, под каким углом рассматривать ген. В основном учёные рассматривают ген как информационную наследственную единицу, а единицей естественного отбора является вид, группа, популяция или отдельный индивид. Ричард Докинз в своей книге «Эгоистичный ген», рассматривает ген как единицу естественного отбора, а сам организм — как машину для выживания генов.
Кто открыл ген?
Непосредственный создатель генетики, монах Георг Иоанн Мендель, не имел понятия, что такое гены. Однако благодаря результатам его опытов были сделаны выводы, что каждый организм обладает определенными дискретными наследственными факторами
На то время (1866 год) его работы не были приняты во внимание, и уже в 1900-м известные сегодня законы Менделя были открыты заново. Правоту Менделя подтвердили, о том не зная:
- Гуго де Фриз (Голландия);
- Карл Эрих Корренс (Германия);
- Эрих фон Чермак (Австрия).
Однако непосредственно определение «ген» впервые использовал датский исследователь Вильгельм Иогансен. В своей работе, датируемой 1909 годом, он писал, что свойства организма обусловлены особыми, отделимыми друг от друга при неизвестных обстоятельствах самостоятельными единицами или элементами в половых клетках, которые мы именуем генами. Геном человека в то время еще не изучался.
Молекулярная эволюция
Основная статья: Молекулярная эволюция
Мутация
Репликация ДНК по большей части чрезвычайно точна, однако ошибки (мутации) случаются. Частота ошибок в эукариотических клетках может составлять всего 10−8 в нуклеотиде на репликацию, тогда как для некоторых РНК-вирусов она может достигать 10−3. Это означает, что в каждое поколение, каждый человек в геноме накапливает 1-2 новые мутации. Небольшие мутации могут быть вызваны репликацией ДНК и последствиями повреждения ДНК и включают точечные мутации, в которых изменяется одно основание, и мутации со сдвигом рамки, в которых одно основание вставляется или удаляется. Любая из этих мутаций может изменить ген по миссенс (изменить код для кодирования другой аминокислоты) или по нонсенс (преждевременный стоп-кодон). Большие мутации могут быть вызваны ошибками в рекомбинации, чтобы вызвать хромосомные аномалии, включая дублирование, делецию, перегруппировку или инверсию больших участков хромосомы. Кроме того, механизмы восстановления ДНК могут вносить мутационные ошибки при восстановлении физического повреждения молекулы. Восстановление, даже с мутацией, является более важным для выживания, чем восстановление точной копии, например, при восстановлении двухцепочечных разрывов.
Когда в популяции вида присутствует несколько различных аллелей гена, это называется полиморфизм. Большинство различных аллелей функционально эквивалентны, однако некоторые аллели могут вызывать различные фенотипические признаки. Самый распространенный аллель гена называется диким типом, а редкие аллели — мутантами. Генетические различия в относительных частотах различных аллелей в популяции обусловлены как естественным отбором, так и генетическим дрейфом. Аллель дикого типа не обязательно является предком менее распространенных аллелей и не обязательно более приспособлена.
Количество генов
Размер генома и количество генов, которые он содержит, значительно варьируют у таксономических групп. Наименьший геном встречаются у вирусов, и вироидов (которые действуют как один некодирующий ген РНК). И наоборот, растения могут иметь очень большие геномы, в рисе содержатся более 46 000 генов, кодирующих белок. Общее количество кодирующих белок генов (протеома Земли) оценивается в 5 миллионов последовательностей.
Примечания
- ↑ (англ.). National Human Genome Research Institute. Дата обращения 1 ноября 2012.
- ↑
- A Dictionary of genetics (англ.) / R.C.King, W.D.Stansfield, P.K.Mulligan. — 7th. — Oxford University Press, 2006. — ISBN 13978-0-19-530762-7.
- Генетика: энциклопедический словарь / Картель Н. А., Макеева Е. Н., Мезенко А. М.. — Минск: Тэхналогія, 1999. — 448 с.
- , с. 44.
- (англ.). OED. Дата обращения 13 ноября 2012.
- Патрушев Л. И. Экспрессия генов / Ю. А. Берлин. — М.: Наука, 2000. — 526 с. — ISBN 5-02-001890-2.
- . Membrana (24 января 2008). Дата обращения 13 ноября 2012.
- , с. 69.
- , с. 72.
- ↑
- , с. 26.
- , с. 27.
- , с. 134.
- Mankertz P. // Animal Viruses: Molecular Biology (неопр.). — Caister Academic Press (англ.)русск., 2008. — ISBN 978-1-904455-22-6.
- . Yeastgenome.org. Дата обращения 27 января 2011.
- Gregory TR. . Gregory, T.R. (2016). Animal Genome Size Database. (2005).
- (недоступная ссылка). Ornl.gov (23 июля 2013). Дата обращения 6 февраля 2014.
- . nih.gov. Дата обращения 30 июня 2016.
- . Дата обращения 17 октября 2012.
Новое секвенирование и базы данных
Исследовать многообразие РНК не так просто по многим причинам, от их высокой лабильности до малых размеров. Однако появление высокопроизводительных методов параллельного секвенирования (когда миллионы фрагментов ДНК из одного образца читаются одновременно), оно же секвенирование нового поколения (next-generation sequencing, NGS), значительно ускорило поиск функциональных участков генома.
Различные платформы для NGS позволяют читать от миллиона до десятков миллиардов коротких последовательностей (отсеквенированные «за один проход» участки называют ридами, от английского read) длиной 50–600 нуклеотидов каждая. К наиболее популярным платформам относятся Illumina и IonTorrent, и все больше внимания привлекают к себе платформы для секвенирования единичных молекул — Pacific Biosciences, нанопоровое секвенирование Oxford Nanopore, Helicos Biosciences HeliScope (компания Helicos объявлена банкротом, но технология лицензирована другим компаниям). Последним не нужно нарабатывать много копий ДНК для секвенирования — они действительно работают с отдельными молекулами! Другой их важный плюс в том, что они позволяют прочитывать значительно более длинные риды, до 10–60 тысяч нуклеотидов. Именно благодаря этому качеству, например, метод нанопорового секвенирования с успехом применили для секвенирования богатого повторами центромерного участка Y-хромосомы человека.
Кроме того, появились методы секвенирования РНК — сначала через создание ДНК-копий, а потом и прямые. Изначально они создавались для количественного определения экспрессии генов, но также способствовали обнаружению ранее не известных РНК, как кодирующих, так и не кодирующих.
Благодаря методам NGS базы данных генов lncRNA и других РНК всего за десятилетие резко выросли, и каталоги генов человека теперь содержат больше генов РНК, чем генов белков. Кроме того, секвенирование РНК позволило установить, что альтернативный сплайсинг, альтернативное инициирование транскрипции и альтернативное прерывание транскрипции происходят гораздо чаще, чем полагали, и затрагивают до 95% человеческих генов. Следовательно, даже когда мы узнаем местоположение всех генов в геноме, нужно будет выявить все изоформы этих генов, а также определить, выполняют ли эти изоформы какие-либо функции или просто представляют собой ошибки сплайсинга.
Задача по составлению каталога всех генов по-прежнему не решена. В последние 15 лет только две исследовательские группы составляют, корректируют и пополняют список генов: RefSeq и Ensembl / Gencode. Первая поддерживается Национальным центром биотехнологической информации при Национальных институтах здравоохранения США, вторая — Европейской молекулярно-биологической лабораторией. Кстати, Gencode — подпроект консорциума ENCODE, «масштабной научной экспедиции в пустыни генома, не кодирующего белки» (см. «Химию и жизнь» № 10, 2012). В этих каталогах есть сотни различий по белок-кодирующим генам, тысячи — по генам длинных некодирующих РНК; имеются существенные расхождения и в других группах (см. таблицу 2).
Таблица 2. Количество разных типов генов в базах данных Gencode, RefSeq, CHESS
Типы генов | Gencode | RefSeq | CHESS |
---|---|---|---|
Белок-кодирующие гены | 19 901 | 20 345 | 21 306 |
Гены длинных некодирующих РНК | 15 779 | 17 712 | 18 484 |
Антисмысловые РНК | 5501 | 28 | 2694 |
Другие некодирующие РНК | 2213 | 13 899 | 4347 |
Псевдогены | 14 723 | 15 952 | — |
Общее число транскриптов (видов РНК) | 203 835 | 154 484 | 323 827 |
По: BMC Biology, 2018, 16:94
В 2017 году сотрудники Университета Джонса Хопкинса под руководством Стивена Зальцберга создали еще одну базу данных генов человека — CHESS. Они использовали данные глубокого секвенирования РНК, чтобы заново получить информацию о всех продуктах транскрипции в разнообразных тканях человеческого организма, и отмечают, что существенно пополнили списки генов. Примечательно, что новая база включает все белок-кодирующие гены как Gencode, так и RefSeq, поэтому пользователям CHESS не нужно решать, какую базу данных они предпочитают. Создатели CHESS отмечают, что более обширная база с большей вероятностью содержит последовательности, ошибочно отнесенные к генам, но лучше потом удалить такую последовательность, чем пропустить существующий ген.
Генетика
Генетика — это наука, изучающая закономерности наследственности и изменчивости, а также обеспечивающие их биологические механизмы. В отличие от многих других биологических наук она с момента своего возникновения стремилась быть точной наукой. Вся история генетики — это история создания и использования все более и более точных методов и подходов. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, генетической инженерии, микробиологической промышленности.
Наследственность — способность организма обеспечивать в ряду поколений преемственность морфологических, биохимических и физиологических признаков и особенностей. В процессе наследования воспроизводятся основные видоспецифические, групповые (этнические, популяционные) и семейные черты строения и функционирования организмов, их онтогенеза (индивидуального развития). Наследуются не только определенные структурно-функциональные характеристики организма (черты лица, некоторые особенности обменных процессов, темперамента и др.), но и физико-химические особенности строения и функционирования основных биополимеров клетки. Изменчивость — разнообразие признаков среди представителей определенного вида, а также свойство потомков приобретать отличия от родительских форм. Изменчивость вместе с наследственностью представляют собой два неразделимых свойства живых организмов.
Смертельно опасная «вечная» жизнь
Говоря о теломерных G4-структурах, нельзя обойти вниманием тот интригующий факт, что, располагаясь на концах 3’-выступа, они блокируют работу теломеразы. А ведь это тот самый широко популяризованный фермент, на который возлагалось столько надежд, и за изучение которого в 2009 году была вручена Нобелевская премия по физиологии и медицине! Теломераза наращивает 3’-концы теломер и таким образом нивелирует их естественное укорочение
Иными словами — продлевает активную жизнь хромосомам и, соответственно, клетке . Однако G-квадруплексы не просто мешают теломеразе делать свое дело — помимо этого, они, располагаясь в области промотора гена TERT, подавляют ее синтез в клетке . И, конечно, этот эффект можно было бы счесть за негативный, если бы не один весьма печальный факт. Дело в том, что избыточная активность теломеразы создает весьма благоприятную среду для перерождения нормальных клеток в раковые. От работы этого фермента сильно зависят порядка 90% всех злокачественных опухолей, ведь он позволяет перерожденным клеткам делиться бесконечно долго .
Блокирование работы теломеразы составляет одну из функций гена BRCA1. BRCA1 — широко известный супрессор раковых опухолей, то есть ген — «борец» с канцерогенезом. Он является важным компонентом системы исправления ошибок в ДНК и контролирует активность целого ряда генов, в том числе задействованных в образовании опухолей . Поэтому мутации в BRCA1 зачастую приводят к развитию рака груди и яичников , а в России они — в «лидерах» генетических причин возникновения онкозаболеваний . Интересно, что подавление теломеразы этим (весьма немаловажным, как мы убедились) белком осуществляется не только за счет регуляции активности кодирующего её гена TERT , но и за счет прямого вмешательства в её работу на теломерах. В частности, предполагают, что BRCA1 связывается с теломерными квадруплексами и стабилизирует их, в результате чего наш «фермент молодости» остаётся не у дел .
Как было отмечено выше, TERT — отнюдь не единственный регулируемый G-квадруплексами ген, благоприятствующий развитию злокачественных опухолей . Помимо него в этом ряду фигурируют c-MYC, c-KIT, BLC2, VEGF, HIF-1a и целый ряд других известных онкогенов . Разумеется, такая закономерность не могла не привлечь внимания ученых, занятых поиском средств против рака. Сегодня существует целый ряд работ, посвященных влиянию тех или иных квадруплекс-связывающих веществ на рост и развитие раковых клеток. И, по результатам этих исследований, искусственное укрепление G-квадруплексов представляется чрезвычайно перспективным путем лечения онкологических заболеваний .
Примечания
. Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University.
. Henry George Liddell, Robert Scott, A Greek-English Lexicon. Perseus Digital Library, Tufts University.
. Online Etymology Dictionary.
// An Introduction to Genetic Analysis (неопр.) / Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart. — 7th. — New York: W.H. Freeman (англ.)русск., 2000. — ISBN 978-0-7167-3520-5.
Hartl D, Jones E (2005)
(англ.). www.dictionary.com. Дата обращения 25 октября 2018.
Большой толковый словарь русского языка / гл. ред. С. А. Кузнецов.. — СПб.: Норинт, 1998.
Большой энциклопедический словарь. Биология / Гл. ред. М. С. Гиляров. — 3-е изд. — М.: Большая российская энциклопедия, 1999. — ISBN 5852702528.
Peter J. Bowler, The Mendelian Revolution: The Emergency of Hereditarian Concepts in Modern Science and Society (Baltimore: Johns Hopkins University Press, 1989): chapters 2 & 3.
↑ Blumberg, Roger B. .
genetics, n., Оксфордский словарь английского языка, 3rd ed.
Bateson W.
The John Innes Centre. Дата обращения 15 марта 2008
Обратите внимание, что письмо было адресовано Адаму Седжвику, зоологу и «Читателю по морфологии животных» в Тринити-колледж (Кембридж)
genetic, adj., Oxford English Dictionary, 3rd ed.
Bateson, W (1907). «The Progress of Genetic Research». Wilks, W Report of the Third 1906 International Conference on Genetics: Hybridization (the cross-breeding of genera or species), the cross-breeding of varieties, and general plant breeding, London: Royal Horticultural Society. Первоначально названный «Международная конференция по гибридизации и селекции растений», название было изменено в результате речи Бейтсона. Видете Cock A. G., Forsdyke D. R. Treasure your exceptions: the science and life of William Bateson (англ.). — Springer (англ.)русск., 2008. — P. 248. — ISBN 978-0-387-75687-5.
Reprint:
// An Introduction to Genetic Analysis (неопр.) / Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart. — 7th. — New York: W.H. Freeman (англ.)русск., 2000. — ISBN 978-0-7167-3520-5.
// An Introduction to Genetic Analysis (неопр.) / Griffiths, Anthony J.F.; Miller, Jeffrey H.; Suzuki, David T.; Lewontin, Richard C.; Gelbart. — 7th. — New York: W.H. Freeman (англ.)русск., 2000. — ISBN 978-0-7167-3520-5.
(недоступная ссылка). University of Wisconsin: Wisconsin Outreach Research Modules. Дата обращения 30 мая 2014.
Генетический код
Белки построены из 20 видов аминокислот, а ген кодирует каждую аминокислоту трехбуквенным кодом. Всего же для генетического кодирования последовательности аминокислот в белках существует 4 вида оснований, содержащихся в ДНК. Поскольку молекула ДНК состоит из двух спирально закрученных нитей, основания одной нити взаимодействуют с основаниями другой (см. рис. 2). Поэтому говорят о паре оснований или нуклеотидной паре в молекуле ДНК.
В 1966 году усилиями ученых многих стран был расшифрован генетический код
Самое важное, что генетический код оказался универсальным для всей живой природы: у бактерии, слона и незабудки одни и те же коды для соответствующих аминокислот. Это свойство кода имеет огромное практическое значение: гены одного организма могут быть перенесены в любой другой, и в любой чужеродной клетке содержащаяся в генах программа может быть использована для синтеза полноценных белковых молекул
Перенос генов в новый организм производится с помощью методов генной инженерии, а животные или растения, содержащие инородный ген (трансген), введенный в их хромосомы, названы трансгенными.
Изменения хромосом в процессе деления клетки
Ген, геном, хромосома – это последовательные звенья цепи передачи информации, где каждое следующее включает предыдущее. Но и они претерпевают определенные изменения в процессе жизни клетки. Так, например, в интерфазе (период между делениями) хромосомы в ядре расположены рыхло, занимают много места.
Когда клетка готовится к митозу (т. е. к процессу разделения надвое), хроматин уплотняется и скручивается в хромосомы, и теперь его становится видно в световой микроскоп. В метафазе хромосомы напоминают палочки, близко расположенные друг к другу и соединенные первичной перетяжкой, или центромерой. Именно она отвечает за формирование веретена деления, когда группы хромосом выстраиваются в линию. В зависимости от размещения центромеры существует такая классификация хромосом:
- Акроцентрические – в этом случае центромера расположена полярно по отношению к центру хромосомы.
- Субметацентрические, когда плечи (то есть участки, находящиеся до и после центромеры) неравной длины.
- Метацентрические, если центромера разделяет хромосому ровно посередине.
Данная классификация хромосом была предложена в 1912 году и используется биологами вплоть до сегодняшнего дня.
Молекулярная основа
См. также: ДНК
Химическая структура фрагмента двойной спирали ДНК. Фрагмент состоит из четырёх спаренных оснований: ЦГ, АТ, ГЦ, ТА. Цепи сахаро-фосфатного остова ориентированы в противоположных направлениях. Основания направлены внутрь и связаны водородными связями с основаниями противоположной цепи.
ДНК
Генетическая информация у подавляющего большинства организмов закодирована в длинных молекулах ДНК. ДНК состоит из двух спирально закрученных полимерных цепей, мономерами которых служат четыре нуклеотида: аденозин, цитидин, гуанозин и тимидин. Нуклеотиды в ДНК состоят из пятиуглеродного сахара (2-дезоксирибозы), фосфатной группы и одного из четырёх азотистых оснований: аденина, цитозина, гуанина и тимина. Азотистое основание связано гликозидной связью с пятиуглеродным (пентозного) сахаром в 1′-положении. Остовом цепей ДНК служит чередующаяся последовательность пентозных сахаров и фосфатов, фосфатные группы присоединяются к сахару в 5′- и 3′-положениях. Номера позиций пентозного кольца отмечены штрихом для того, чтобы различать нумерацию колец в сахаре и азотистом основании.
Из-за химического состава пентозных остатков цепи ДНК имеют направленность. Один конец полимера ДНК содержит открытую гидроксильную группу на дезоксирибозе в 3′-положении; этот конец называется 3′-конец. Другой конец содержит открытую фосфатную группу, это 5′-конец. Две цепи (нити) двойной спирали ДНК ориентированы в противоположных направлениях. Синтез ДНК, в том числе при репликации ДНК, происходит в направлении 5 ‘→ 3’, потому что новые нуклеотиды добавляются посредством реакции дегидратации, которая использует открытый 3’-гидроксил в качестве нуклеофила.
Экспрессия генов, закодированных в ДНК, начинается с транскрипции нуклеотидной последовательности ДНК в последовательность нуклеотидов другого типа нуклеиновых кислот — РНК. РНК очень похожа на ДНК, но её мономеры содержат рибозу, а не дезоксирибозу. Кроме того, вместо тимина в РНК используется урацил. Молекулы РНК являются одноцепочечными и менее стабильны, чем ДНК. Гены белков содержат кодирующую последовательность, состоящую из серии тринуклеотидных блоков — триплетов, которые соответствуют аминокислотам. Правило, по которому определяется, какому триплету соответствует какая аминокислота, называется генетическим кодом. Считывание генетического кода происходит в рибосоме во время трансляции РНК в белок. Генетический код почти одинаков для всех известных организмов.
Хромосома
Изображение нормального женского кариотипа, полученного при помощи флуоресцентной микроскопии и метода FISH. ДНК окрашена в красный цвет, а участки хромосом, обогащённые по числу локализованных в них генов, окрашены в зелёный цвет. Самые большие хромосомы примерно в 10 раз больше самых маленьких.
Наследственный материал организма, или геном, хранится в одной или нескольких хромосомах, число которых специфично для вида. Хромосома состоит из одной очень длинной молекулы ДНК, которая может содержать тысячи генов. Область хромосомы, где находится ген, называется локусом. Каждый локус содержит определённый аллель гена. Представители популяции могут отличаться по аллелям гена, находящимся в одинаковых локусах хромосом.
Большинство эукариотических генов хранятся в нескольких линейных хромосомах. Хромосомы упакованы в ядре в комплексе с белками хроматина. Наиболее многочисленными белками хроматина являются гистоны, которые формируют белковую глобулу, называемую нуклеосомой. ДНК обвивается вокруг нуклеосом, что представляет собой первый уровень упаковки ДНК в хромосоме. Распределение нуклеосом вдоль ДНК, а также химические модификации самих гистонов регулируют доступность ДНК для регуляторных факторов, участвующих в транскрипции, репликации, репарации. Помимо генов эукариотические хромосомы содержат также служебные последовательности, обеспечивающие стабильность и воспроизведение хромосом, а также их распределение между дочерними клетками в митозе. Это теломеры, сайты инициации репликации и центромера, соответственно.
Доноры генома
В межгосударственном проекте «Геном человека» (HGP), исследователи из IHGSC взяли у большого числа доноров образцы крови (женщин) и спермы (мужчин). Из числа собранных образцов источником ДНК стали лишь несколько. Таким образом, личности доноров были скрыты, чтобы ни доноры, ни учёные не могли знать, чья именно ДНК была секвенирована. Во всём проекте были использованы многочисленные клоны ДНК из различных библиотек (англ.). Большинство из этих библиотек были созданы доктором Питером де Хонгом (англ. Pieter J. de Jong). Неформально сообщалось, и в сообществе генетиков хорошо известно, что большая часть ДНК в государственном проекте получена от единственного анонимного донора — мужчины из Буффало (кодовое название RP11).
Учёные HGP использовали белые кровяные клетки из крови двух мужчин и двух женщин доноров (случайно выбранных из 20 образцов каждого пола) — каждый донор стал источником отдельной библиотеки ДНК. Одна из этих библиотек (RP11) использовалась значительно больше, чем другие по соображениям качества. Небольшой технический нюанс заключается в том, что мужские образцы содержали только половину количества ДНК, поступившего из X и Y хромосом в сравнении с другими 22 хромосомами (аутосомами); это происходит потому, что каждая мужская клетка (сперматозоид) содержит только одну X- и одну Y-хромосому, а не две, как другие клетки.
Хотя главная секвенирующая фаза проекта «Геном человека» завершена, исследования изменчивости ДНК продолжаются в международном проекте HapMap, цель которого состоит в идентификации структуры групп однонуклеотидного полиморфизма (SNP) (которые называются гаплотипами). Образцы ДНК для HapMap получены от, в общей сложности, 270 человек: народа Йоруба в Ибадане (Нигерия), японцев из Токио, китайцев из Пекина и французского источника Centre d’Etude du Polymorphisms Humain (англ.) (CEPH), который состоит из резидентов США, имеющих происхождение из западной и Северной Европы.
В проекте компании Celera Genomics для секвенирования использовалась ДНК, поступившая от пяти различных человек. Крейг Вентер, основатель компании и бывший в то время главным научным руководителем Celera Genomics, позднее сообщил (в публичном письме в журнал «Science»), что его ДНК была одним из 21 образцов в общем фонде, 5 из которых были отобраны для использования в проекте.
4 сентября 2007 года, команда под руководством Крейга Вентера опубликовала полную последовательность его собственной ДНК, впервые сняв покров тайны с шестимиллиарднонуклеотидной последовательности генома единственного человека.