Нейрон
Содержание:
Нейроглия как составная часть нервной ткани[править | править вики-текст]
- Источник раздела: Большая российская энциклопедия
Различные формы нейроглиальных клеток: макроглия – астроциты (1, 2), олигодендроциты (3), эпендимоциты (4); микроглия – глиальные макрофаги (5).
НЕЙРОГЛИ́Янейро…греч.Вирхов
В центральной нервной системе выделяют два типа нейроглиальных клеток: макроглию (включает астроциты, олигодендроциты, эпендимоциты, радиальную глию) и микроглию. Астроциты формируют среду обитания для нейронов; участвуют в их метаболизме, осуществляя перенос глюкозы; поддерживают на определённом уровне концентрацию ионов; удаляют медиаторы из синаптической щели и модулируют её пластичность; формируют гематоэнцефалический барьер; участвуют в процессах регенерации; играют роль вазомодуляторов; удаляют погибшие клетки. Некоторые астроциты обладают свойством стволовых клеток, из которых развиваются новые нервные клетки и нейроглия в мозге взрослых позвоночных. Олигодендроциты формируют миелиновые оболочки на аксонах нейронов мозга, что усиливает проведение электрического сигнала. Эпендимоциты выстилают желудочки мозга, секретируют цереброспинальную жидкость. Клетки радиальной глии являются стволовыми в развивающейся нервной системе, их отростки служат направляющими для миграции нейробластов в область дифференцировки. В периферической нервной системе шванновские клетки выполняют функцию, сходную с олигодендроцитами, создавая миелиновую оболочку на аксонах. Клетки макроглии происходят от общих с нейронами предшественников из нервной трубки (центральная нервная система) или нервного гребня (периферическая нервная система). Микроглия происходит от мезенхимных клеток гематопоэтического ряда костного мозга, которые в ходе эмбриогенеза заселяют центральную нервную систему; выполняют защитную функцию при повреждении мозга.
Химический состав миелина
Как и большинство клеточных мембран, он имеет липопротеидную природу. Причём содержание жиров здесь очень высокое – до 75%, а белков – до 25%. Миелин в незначительном количестве содержит также гликолипиды и гликопротеиды. Химический состав его различается в спинномозговых и в черепно-мозговых нервах.
В первых наблюдается высокое содержание фосфолипидов – до 45%, а остальная часть приходится на холестерин и цереброзиды. Демиелинизация (то есть замена миелина на другие вещества в нервных отростках) приводит к таким тяжёлым аутоиммунным заболеваниям, как, например, рассеянный склероз.
С химической точки зрения, этот процесс будет выглядеть так: миелиновая оболочка нервных волокон меняет свою структуру, что проявляется прежде всего в уменьшении процентного содержания липидов по отношению к белкам. Далее снижается количество холестерина и возрастает содержание воды. А всё это приводит к постепенной замене миелина, содержащего олигодендроциты или шванновские клетки на макрофаги, астроциты и межклеточную жидкость.
Результатом таких биохимических изменений будет резкое снижение способности аксонов проводить возбуждение вплоть до полной блокировки прохождения нервных импульсов.
Нейроглия
Нейроглия – это совокупность клеток, которая окружает нейроны (макроглиоциты и микроглиоциты). Около 40% ЦНС приходится на клетки глии, они создают условия для выработки возбуждения и его дальнейшей передачи, выполняют опорную, трофическую, защитную функции.
Макроглия:
Эпендимоциты
– образуются из глиобластов нервной трубки, выстилают канал спинного мозга.
Астроциты
– звездчатые, небольших размеров с многочисленными отростками, которые образуют гематоэнцефалический барьер и входят в состав серого вещества ГМ.
Олигодендроциты
– основные представители нейроглии, окружают перикарион вместе с его отростками, выполняя такие функции: трофическую, изолирования, регенерации.
Нейролемоциты
– клетки Шванна, их задача образование миелина, электрическая изоляция.
Микроглия
– состоит из клеток с 2-3 ответвлениями, которые способны к фагоцитозу. Обеспечивает защиту от чужеродных тел, повреждений, а также удаление продуктов апоптоза нервных клеток.
Нервные волокна
— это отростки (аксоны или дендриты) покрытые оболочкой. Они делятся на миелиновые и безмиелиновые. Миелиновые в диаметре от 1 до 20 мкм
Важно, что миелин отсутствует в месте перехода оболочки от перикариона к отростку и в области аксональных разветвлений. Немиелинизированные волокна встречаются в вегетативной нервной системе, их диаметр 1-4 мкм, перемещение импульса осуществляется со скоростью 1-2 м/с, что намного медленнее, чем по миелинизированых, у них скорость передачи 5-120 м/с
Нейроны подразделяются за функциональными возможностями:
-
Афферентные
– то есть чувствительные, принимают раздражение и способны генерировать импульс; -
ассоциативные
— выполняют функцию трансляции импульса между нейроцитами; -
эфферентные
— завершают перенос импульса, осуществляя моторную, двигательную, секреторную функцию.
Вместе они формируют рефлекторную дугу
, которая обеспечивает движение импульса только в одном направлении: от чувствительных волокон к двигательным. Один отдельный нейрон способен к разнонаправленной передачи возбуждения и только в составе рефлекторной дуги происходит однонаправленное течение импульса. Это происходит из-за наличия в рефлекторной дуге синапса – межнейронного контакта.
Синапс
состоит из двух частей: пресинаптической и постсинаптической, между ними находится щель. Пресинаптическая часть – это окончание аксона, который принес импульс от клетки, в нем находятся медиаторы, именно они способствуют дальнейшей передачи возбуждения на постсинаптическую мембрану. Самые распространённые нейротрансмитеры: дофамин, норадреналин, гамма аминомасляная кислота, глицин, к ним на поверхности постсинаптической мембраны находятся специфические рецепторы.
Симптомы глиобластомы мозга.
Общемозговые симптомы глиобластомы мозга.
Головная боль, головокружение, тошнота и рвота. Головная боль обычно более выражена по утрам. Может усиливаться при кашле и физических нагрузках. Примерно в половине случаев является первичным и единственным симптомом. Могут быть эпилептические припадки и потеря сознания.
Очаговые симптомы глиобластомы мозга.
Очаговая симптоматика связанная с потерей каких-либо функций мозга и зависит от расположения опухоли. Более того, если очаг повреждения находится слева, то нарушения появляются справа и наоборот. Существуют также функциональные центры, которые находятся только в доминирующем полушарии – у правши слева, а у левши справа. Например, речевые центры.
Доля мозга | Симптомы |
Лобная | Моторная афазия, парезы конечностей, может пострадать психоэмоциональная сфера, интеллект и память. |
Височная | Сенсорная афазия. |
Теменная | Гипестезия, апраксия, тактильная агнозия. |
Затылочная | Выпадение полей зрения, зрительная агнозия. |
Примерно в половине эпизодов могут быть только парезы и афазия без какой-либо другой очаговой симптоматики.
Патология
В ответ на воздействие различных патологических агентов клетки нейроглии реагируют обратимыми или необратимыми дистрофическими реакциями. Патоморфологические изменения глиоцитарной ткани могут проявляться в виде:
- Отека и набухания;
- Гипертрофии или атрофии;
- Гиперплазии;
- Амебоидного перерождения;
- Гомогенезирующего метаморфоза;
- Клазматодендроза;
- Инволюции.
Такое нарушение в морфологии, меняющее само клеточное строение, можно встретить при гистологическом исследовании церебральных структур пациентов с рядом серьезных заболеваний – опухолями головного мозга, боковым амиотрофическим склерозом, болезнью Альцгеймера, расстройствами аутистическаго спектра, биполярным расстройством.
При морфологическом исследовании головного мозга Альберта Эйнштейна было обнаружено повышенное количество клеток глии. Это подтвердило заключения ученых об участии глиальных структур в формировании процессов мышления.
Долгое время при изучении работы нервной системы нейроглиальным элементам отводили лишь вспомогательное второстепенное значение. В современной неврологии ее рассматривают как основной элемент нервной ткани. Патологические изменения глиальных структур способны спровоцировать развитие ряда тяжелых нейродегенеративных заболеваний.
Оцените эту статью:
- 4.53
Всего голосов: 123
Формирование толстых структур
Нервное волокно миелинового типа существенно толще безмиелинового. По процессу формирования оболочек они одинаковые. Тем не менее ускоренный рост нейронов в соматическом отделе, который связан с развитием всего организма, способствует вытягиванию мезаксонов. После этого леммоциты несколько раз оборачиваются вокруг аксонов. В итоге формируются наслоения концентрического типа, а ядро с цитоплазмой отодвигаются к последнему витку, который является наружной оболочкой волокна (неврилеммой). Внутренний слой состоит из мезаксона, обвитого несколько раз, и называется миелиновым. Со временем количество витков и размеры мезаксона постепенно возрастают. Это связано с прохождением процесса миелинизации в период роста аксонов и леммоцитов. Каждый следующий виток шире предыдущего. Самым широким является тот, который содержит цитоплазму с ядром леммоцита. Кроме того, различается толщина миелина и по всей длине волокна. В тех местах, где леммоциты контактируют между собой, слоистость исчезает. В контакт вступают только наружные слои, в состав которых входит цитоплазма и ядро. Такие места образуются в связи с отсутствием в них миелина, утончения волокна и именуются узловыми перехватами.
Классификация
Структурная классификация
На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.
Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.
Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.
Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.
Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.
Функциональная классификация
По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).
Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.
Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными.
Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.
Морфологическая классификация
Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:
- учитывают размеры и форму тела нейрона;
- количество и характер ветвления отростков;
- длину аксона и наличие специализированных оболочек.
По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.
По количеству отростков выделяют следующие морфологические типы нейронов:
- униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
- псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
- биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
- мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.
Миелинизация нервных волокон
При формировании безмиелинового нервного волокна осевой цилиндр (отросток нейрона) погружается в тяж из леммоцитов, цитолеммы которых прогибаются и плотно охватывают осевой цилиндр в виде муфты, края которой смыкаются над ним, образуя дупликатуру клеточной мембраны — мезаксон. Соседние леммоциты входящие в состав сплошного глиального тяжа своими цитолеммами образуют простые контакты. Безмиелиновые нервные волокна имеют слабую изоляцию, допускающую переход нервного импульса с одного волокна на другое, как в области мезаксона, так и в области межлеммоцитарных контактов.
Миелиновые нервные волокна значительно толще безмиелиновых. Принцип образования их оболочек такой же, как и безмиелиновых, то есть осевые цилиндры также прогибают цитолемму глиоцитов, образуя линейный мезаксон. Однако, быстрый рост нейронов соматического отдела нервной системы, связанный с формированием и ростом всего организма, приводит к вытягиванию мезаксонов, многократному обращению леммоцитов вокруг осевых цилиндров. В результате образуются концентрические наслоения. При этом цитоплазма с ядром леммоцитов оттесняется в область последнего витка, образующего наружный слой оболочек волокна, называемой шванновской оболочкой или неврилеммой. Внутренний слой, состоящий из витков мезаксона, называется миелиновым или миелиновой оболочкой. Следствием того, что миелинизация происходит в процессе роста как отростков нейронов, так и самих леммоцитов, является постепенное увеличение количества витков и размеров мезаксона, то есть каждый последующий виток шире предыдущего. Следовательно, последний виток, содержащий цитоплазму с ядром леммоцита является самым широким. Толщина миелина по длине волокна неоднородна, а в местах контактов соседних леммоцитов слоистая структура исчезает и контактируют лишь наружные слои, содержащие цитоплазму и ядро. Места их контактов называются узловыми перехватами (перехватами Ранвье), возникающими вследствие отсутствия здесь миелина и истончения волокна.
В ЦНС миелинизация нервного волокна происходит за счет обхвата осевых цилиндров отростками олигодендроцитов.
Как мембранная структура миелин имеет липидную основу и при обработке окисями окрашивается в тёмный цвет. Другие компоненты мембраны и промежутки не окрашиваются, поэтому периодически встречаются светлые полоски − насечки миелина (насечки Шмидта-Лантермана), которые соответствуют небольшим прослойкам цитоплазмы леммоцита.
В цитоплазме осевого цилиндра располагаются продольно ориентированные нейрофибриллы и митохондрии, которых больше в непосредственной близости к перехватам и в концевых аппаратах волокна. Цитолемма осевого цилиндра (аксона) называется аксолеммой. Она обеспечивает проведение нервного импульса, который представляет собой волну деполяризации аксолеммы. Если осевой цилиндр представлен нейритом, то в нём отсутствуют гранулы базофильного вещества.
Нервные волокна и их окончания
Нервные волокна – это отростки нейронов. Гистология предопределяет их классификацию. В зависимости от наличия или отсутствия миелинового слоя у олигодендроцитов (леммоцитов), окружающих волокна, их разделяют на:
- миелиновые;
- безмиелиновые.
Миелиновую оболочку формируют шванновские клетки (для периферических нервов) или олигодендроциты (для ЦНС), которые накручены вокруг отростка нервной клетки. Участки, где находится граница двух рядом расположенных леммоцитов и миелинового слоя нет, называют узловыми перехватами Ранвье.
Оболочка безмиелиновых волокон также образована леммоцитами, однако на них отсутствует миелиновый слой.
В зависимости от строения, скорости проведения возбуждения и других функциональных способностей волокна разделены на группы:
А. Представлена миелиновыми волокнами. Однако данная группа градируется в зависимости от диаметра нервного волокна, а соответственно, и скорости проведения импульса на четыре подкласса: α, β, γ, δ. Их характеристика представлена в таблице.
Волокно |
Диаметр, мкм |
Скорость распространения возбуждения, м/с |
Функции |
α-волокна |
12-22 |
70-120 |
Проводят импульсы от моторных зон ЦНС к поперечно-полосатой скелетной мускулатуре и от проприорецепторов к нервным центрам. |
β-волокна |
8-13 |
40-70 |
Преимущественно представлены чувствительными проводниками, передающими импульсы от различных рецепторов в структуры ЦНС. |
γ-волокна |
4-8 |
15-40 |
Передают возбуждение от клеток спинного мозга к поперечно-полосатым мышечным волокнам. |
δ-волокна |
1-4 |
5-15 |
Представлены в основном чувствительными элементами, проводящими импульсы от тактильных, температурных рецепторов и части ноцицепторов к структурам ЦНС |
- В. К данному типу волокон относятся миелинизированные предузловые вегетативные нервы. Их диаметр составляет от 1 до 3 мкм. Скорость проведения импульса колеблется от 3 до 18 м/с.
- С. С-волокна являются безмиелиновыми. Они имеют не более 2 мкм в диаметре. Скорость распространения возбуждения также небольшая – от 0.5 до 3 м/с. Подавляющее большинство волокон типа С представлены постузловыми симпатическими проводниками и нервными волокнами, проводящими импульсы от ноцицепторов, части терморецепторов и барорецепторов.
Нервные волокна заканчиваются нервными окончаниями. Существует три их варианта:
- Эффекторные (или эффекторы) представлены моторными окончаниями двигательных нейронов;
- Чувствительные (или рецепторы) являются концевыми частями дендритов афферентных нейронов;
- Синаптические (места контактов двух нейронов), обеспечивающие межнейронные связи.
Нервная ткань представляет собой сложную систему связанных между собой элементов, обладающих определенными свойствами. Гистология, анатомическое строение и функции нервной ткани тесно взаимосвязаны. Именно клеточный состав определяет ее характерные физиологические особенности. За счет сочетанного комплексного взаимодействия отдельных структур возникает возможность слаженной работы всего организма.
Оцените эту статью:
- 4.26
Всего голосов: 149
Мозг под замену
Развитие темы запчастей для человека неизбежно приводит нас к теме самого сокровенного — того, что делает человека человеком. Замена мозга — пожалуй, самая фантастическая идея, касающаяся потенциального бессмертия. Проблема, как нетрудно догадаться, в том, что мозг — похоже, самый сложный из известных человечеству материальных объектов во Вселенной. И, возможно, один из самых непонятных. Известно, из чего он состоит, но очень мало известно о том, как он работает.
Новая кожа Новая кожа. Сотрудник лаборатории достает из ванночки полоску искусственно выращенного эпидермиса. Ткань создали в дерматологическом институте в г. Помеция, Италия, под руководством профессора Микеле де Лука.
Таким образом, если мозг удастся воссоздать как совокупность нейронов, устанавливающих друг с другом связи, надо еще придумать, как поместить в него всю необходимую человеку информацию. Иначе в лучшем случае мы получим взрослого человека с «серым веществом» младенца. Несмотря на всю сверхфантастичность конечной цели, наука активно работает над проблемой регенерации нервной ткани. В конце концов, цель может быть и скромнее — например, восстановление части мозга, разрушенной в результате травмы или тяжелого заболевания.
Проблема искусственной регенерации мозговой ткани усугубляется тем, что мозг обладает высокой гетерогенностью: в нем присутствует множество типов нервных клеток, в частности тормозные и возбуждающие нейроны и нейроглия (буквально — «нервный клей») — совокупность вспомогательных клеток нервной системы. Кроме того, разные типы клеток определенным образом расположены в трехмерном пространстве, и это расположение необходимо воспроизвести.
Трахея Это тот самый случай, когда технологии выращивания тканей уже работают в медицине и спасают жизни людей. Известны случаи успешной имплантации трахеи, выращенной на донорской матрице из клеток спинного мозга пациента.
Особенности нейроглиальных клеток
Как мы уже говорили, миелиновая оболочка дендритов и аксонов образована специальными структурами, характеризующимися низкой степенью проницаемости для ионов натрия и кальция, а потому имеющих только потенциалы покоя (они не могут проводить нервные импульсы и выполняют электроизоляционные функции).
Данные структуры называются глиальными клетками. К ним относятся:
- олигодендроциты;
- волокнистые астроциты;
- клетки эпендимы;
- плазматические астроциты.
Все они формируются из наружного слоя зародыша – эктодермы и имеют общее название – макроглия. Глия симпатических, парасимпатических и соматических нервов представлена шванновскими клетками (нейролеммоцитами).